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A multigrid method for the acceleration of transonic potential flow calculations based on a 
Galerkin finite element approach is described. In order to allow the use of arbitrary body 
fitted meshes, it is necessary to introduce nonuniform interpolation and residual weighting. 
Emphasis is put on the construction of these operators consistent with the finite element 
approximation, while standard successive line overrelaxation is used as a smoothing step. 
Substantial convergence acceleration is obtained and results are presented for different 
transonic flow configurations including shocks. 

INTRODUCTION 

The multigrid method was originally introduced for the solution of the system of 
equations obtained from the finite difference (FD) discretization of elliptic partial 
differential equations by Fedorenko [ 11; it was extended by Bakhalov [ 2 ] and further 
developed by Brandt [ 161. It is based on the idea that corrections for the solution on 
a fine grid can be effectively approximated on a coarse grid with the help of the 
common underlying differential equation. 

Finite element (FE) applications were soon recognized and at the present time the 
mathematical foundations are even better established than in the FD case, although 
practical implementations are rare. Convergence proofs under fairly general 
conditions for elliptic boundary value problems were obtained by Nicolaides [3,4 1, 
Hackbush IS], and others. Two of the basic conclusions of these investigations are 
that the convergence of the multigrid methods is independent of the step size and that 
the amount of computational work for solving the discrete system of n unknowns is 
proportional to n. Practical aspects of the FE implementation on model problems are 
given by Brandt [6] and by Nicolaides [ 71, who describes extensive numerical results 
obtained for a Poisson eqution and another elliptic equation with variable coefficients 
and mixed boundary conditions, both on a uniformly discretized rectangular domain. 
These results confirm the convergence rates obtained with finite differences. 

In transonic flow computations, the first multigrid solutions have been proposed by 
South and Brandt [8], with the transonic small perturbation equation and successive 
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line relaxation (SLOR) as the smoothing operator. Problems were encountered in the 
treatment of the boundary conditions and in calculations on nonuniform and 
curvilinear grids, probably due either to a lack of smoothing on a fine grid before 
passing to a coarser one or to an unsatisfactory residual weighting. Jameson [ 9] 
solved the transonic full potential equation on an arbitrary mesh and obtained very 
satisfying results with a generalized AD1 as the smoothing step. As in most other 
applications, these multigrid methods are implemented on a rectangular (or circular) 
uniform computational mesh obtained from a mapping of the original physical 
curvilinear mesh; this allows uniform interpolations. This approach is appropriate in 
cases where the physical problem and boundary conditions are transformed by a 
global coordinate transformation as in most finite difference methods. The classical 
FE approach, however, handles the problem in the physical plane and uses only a 
local mapping of each curvilinear element to a reference parent element to facilitate 
the volume integrations needed in the computation. 

Simple uniform interpolation is only obtained if the tine mesh elements are uniform 
subdivisions of a coarse grid element. This would pose a severe limit on the finest 
mesh that can be achieved, since only the mesh points of the coarsest mesh could be 
chosen in an arbitrary way. Therefore nonuniform interpolation and residual 
weighting is introduced in this paper, preserving the same flexibility with respect to 
the geometry as the usual FE methods. An advantage of the FE treatment is that the 
method leads to natural choices for the interpolation and weighting, even on the 
boundaries of the domain. 

Indeed, a simple but articifial residual injection following the lines of FD methods 
has been tried with poor results, confirming the observations of Nicolaides [ 71 on a 
simple rectangular domain. It turns out that the amount of additional work due to the 
nonuniformity is reduced because the same numerical coefficients are needed for 
coarse to fine interpolations as for the tine to coarse weighting. 

In the present investigation, successive line relaxation with downstream sweep 
direction is used as the smoothing component. Alternatively, this smoothing operator 
can be replaced by the FE AD1 method developed in the past [ lo]. 

Numerical experiments on channel, single airfoil, and cascade geometries indicate 
a substantial convergence acceleration compared to the grid refinement technique 
which consists in the application of SLOR to successively finer grids with the 
previous coarse grid solution as the initial approximation, 

EQUATION AND FE APPROXIMATION WITH ISOPARAMETRIC ELEMENTS 

A brief account of the FE treatment is given here. More details can be found in 
previous publications and the references contained therein [ 13-l 51. 

The potential equation in conservative form is giver1 by 
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where x and ,v are the Cartesian coordinates in the physical plane and #,, #y are the 
velocity components. 

The density p is obtained from the isentropic relation 

P = Pt I1 - ((7 - wYn@: + 4:>1”y-‘, (2) 

where pt and r, are stagnation density and temperature, and y is the ratio of specific 
heats. 

In transonic flow regime, equation (1) is mixed elliptic-hyperbolic and allows 
different weak solutions for a given set of boundary conditions. If proper viscosity 
terms are added to the equation, one is certain to obtain a unique solution which is 
equal to the physical solution except for a small region around shocks [ 111. 

The artificial density form of the artificial viscosity terms (due to Hafez et al. I12 I) 
is particularly well suited for FE applications and works satisfactorily for flows with 
Mach numbers up to 1.5 [ 14, 151. It is obtained by giving an upwind bias to the 
density which is replaced by 

where p tS is the upwind derivative of p along the streamwise direction s, As is the 
mesh spacing and ,u is a switching function with cutoff Mach number M, which 
controls the amount of artificial viscosity: 

p = max(O, 1 - Mz/M*). WI 

A finite element weighted residual approach is based on the weak formulation of 
(1) given by 

R(4)= I’ jiVWV@dS-f W/Tgds=O 
-S . s 

(4) 

for any continuous test function W, where S is the physical flow domain with 
boundary s. The functional R(4) is called the residual. The integral over the boundary 
is the expression of the Neumann boundary conditions (BC) which are part of the 
problem specification. Three types of geometry are considered, each giving different 
specific Neuman BC: channel geometry, single airfoil and cascade geometry. Channel 
walls and blade or profile boundaries require the no-flux condition 

&y/&I) = 0. 

Points belonging to periodic boundaries in cascade geometries are treated as interior 
points by letting corresponding periodic points coincide [14]. At inlet and outlet 
boundaries, either the solution is given (Dirichlet condition) or the mass flow rate 
b(@/&z) is specified directly or in an iterative way by applying a Kutta Youkowski 
condition at the trailing edge. The far field condition for the single airfoil geometry is 
also introduced by forcing the known mass flow rate through the far field boundary. 
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An FE approximation of a function 4(x, y) is obtained by defining a Iinite- 
dimensional space Sh with basis functions Nz(x, u) attached to a set of meshpoints 
(i, j) spread over the flow domain S: 

where & are the meshpoint values of @ and h the typical mesh size characteristic of 
the space Sh. It follows from (5) that 

Ni.(x&, y;,> = 8;’ = 1 for (i, j) = (k, /), 

=o otherwise. (6) 

A discrete Galerkin approximation for the weak form (4) is found by taking a 
finite number of test functions W, namely, the basis functions of space Sh, giving the 
following nonlinear system of equation for the meshpoint values 

where K(qih) is the stiffness matrix and fh the contribution of the Neuman BC 

K;(@h) = 1’ fi(#“) VN;, VN; dS and 
-s 

j-:,=jj-gN:,dr. 

(7) 

It is well known that exactly the same expression for the residual is found by solving 
the discrete minimization problem in Sh in cases where a minimum principle 
equivalent to the equation can be formulated (as in the fully elliptic subsonic case). 

Expression (7) for the residual is developed in the physical plane and written in 
physical coordinates. It can be evaluated for any trial function d after a choice of the 
type of element has been made which determines the type of basis functions of the 
space Sh. In [15], bilinear and biquadratic Lagrange elements have been used, the 
latter allowing third-order accuracy and parabolic approximation of the boundaries. 
With these elements, the integrations over an element surface (Eq. (8)) are usually 
carried out with Gauss quadrature after transformation of the arbitrarily shaped 
element to a unit square. In the standard FE treatment, this transformation is the 
locally defined isoparametric mapping 

xh(th, qh) = x x;N;(th, v”), 
i.i 

Pb) 

which is completely determined by the mapping of the meshpoints of the space Sh 
causing arbitrarily located meshpoints of the grid Sh’* not to be mapped uniformly in 
the (Th, qh) plane. 
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The discrete nonlinear system (Eq. (7)) has been solved with the usual iterative 
methods such as successive line overrelaxation (SLOR) and approximate 
factorization (ADI) for which an FE version was developed [lo]. The simple SLOR 
method is reliable but extremely slow because it eliminates effectively only the errors 
with wavelength comparable to the meshwidth h. Substantial convergence 
acceleration was achieved by solving the series of N + 1 problems 

Rf”h=O 
lJ 3 n = N, N - 1 ,..., 1, 0, (10) 

defined in the space SZnh, where the errors of wavelength 2”h are eliminated effec- 
tively and the computational effort is reduced. 

In this grid refinement technique, the influence of the coarse meshes is only felt 
through the initial approximation for the next finer mesh, while in the full multigrid 
approach described subsequently, the coarse grid equations are modified in order to 
represent meaningful approximations of the line grid corrections. 

MULTIGRID ALGORITHM 

The multigrid approach is based on a different treatment of low- and high- 
frequency errors in the approximate solution: the high-frequency error components 
can only be resolved on a fine grid and are fortunately eliminated efficiently by 
existing relaxation techniques. Low-frequency components on the other hand are 
nearly unaffected by relaxation, but they are scaled with the dimensions of the 
physical domain and hence can be eliminated on a coarser grid where the 
computational effort is lower and the propagation of corrections through the domain 
is much more rapid. 

We consider the system of nonlinear equations (Eq. (7)) constructed on the finest 
mesh with characteristic spacing h 

Rh(qih) = Kh(#h) -f h = 0. (11) 

This may be written in correction form with respect to a known approximate solution 
4: as 

kh(Qh) = Kh(#; + @“) - Kh(q$) = -R”@;), 

where the unknowns are now the correction Qh given by 

(12) 

tih = $1: + 84”. (13) 

Supposing that the high-frequency errors have been eliminated effectively by means of 
a smoothing operation such as SLOR or ADI, the correction 8tih and the residual 
RhUh) may be considered as smoothly varying quantities for which an approx- 
imation on a coarser grid makes sense. This mesh with typical spacing 2h is obtained 
by dropping the odd-numbered coordinate lines of the mesh Sh. An updated approx- 
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imation #I+, can be calculated according to Eq. (13) by interpolating the coarse grid 
approximation Qzh for &$’ back to the original mesh: 

#I+, = 4: + I:,&*“, (14) 

where It,, is the coarse to fine grid function interpolation operator called 
prolongation. The coarse grid approximation 8d2h for the fine grid correction is the 
solution to the following equation on the coarse mesh: 

zz2h(sqPh) = -Rz;hRh(#;). (15) 

The fine to coarse residual restriction operator RZih constructs a meaningful approx- 
imation to the coarse grid residual RZh based on the smoothly varying tine grid 
residuals. 

By defining a coarse grid solution dZh as the approximation of 4” on the coarse 
grid 

fPh = Zih#(: + &Ph, (16) 

where 1:” is the function restriction, Eq. (15) takes again the usual form of Eq. (11); 

K2h(#2h) = f 2h. (17) 

Here the right-hand side is a known function of the fine grid approximate solution 

f 2h = -RZ;hR “(&) + K2h(Z;h&), (18) 

and BdZh can be eliminated from updating formula (14) by means of (16): 

(19) 

The solution @2h in turn can be approximated on the mesh S4h when it is sufftciently 
smooth, i.e., the whole procedure can be applied in a recursive way to Eq. (17). This 
nonlinear algorithm (FAS scheme) is due to Brandt [ 161, who describes an adaptive 
strategy for the transition to a coarser or finer grid depending on the convergence 
level and speed on a particular grid. A simpler fixed strategy has been used in the 
present work [ 71: Starting on the finest mesh with spacing h, one line overrelaxation 
sweep is performed followed by the transition to the next coarse grid by means of 
Eqs. (17) and (18) until the coarsest grid is reached. On the coarsest grid, some 
additional relaxation sweeps are performed and the solution of the next finer grid is 
updated by means of Eq. (19). This is followed by one relaxation step until the 
second finest grid is reached. The cycle terminates with the updating of the finest grid 
approximate solution with the help of Eq. (19). 

As distinct from FD approaches, the interpolation operators Iih, Z:,, and RZih are 
not arbitrary but based on the FE interpolation spaces Sh and SZh. They are 
considered in more detail in the following sections. 
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THE COARSE TO FINE GRID FUNCTION INTERPOLATION: OPERATOR Zth 

The only natural choice for the interpolation of a coarse mesh function 4”’ to a 
fine mesh location (x”,, v”,) is to use the value of #2h in the location (AC;, yi) given by 
the FE approximation in space SZh: 

[z:h$2h]ij = g’“(x;, y”,) = y z$&;, 
k.l 

(20) 

where the matrix Zf, is given by 

zf, = iv:;(x;) y”,). (21) 

On an arbitrary mesh, this results in nonuniform interpolation coefficients Z$ and 
with bilinear elements, for instance (Fig. 1), uniform interpolation is only obtained if 
the line grid meshpoints are situated in the middle of the coarse grid element sides 
and in the center, in this case only giving the simple formula (Fig. la) 

[z;h#2h]C = $(&” + qp:” + 4:” + 4:“) for the centernode, 

Iz:,$‘“1,M = W” + 4,‘“) for the midside node i - j, (22) 

Iz;,qPhli = !$y for the corner nodes (identity). 

It follows that simple uniform interpolation is only possible for uniform retinements 
of the coarsest mesh, which could itself be chosen arbitrarily. 

1 

2 2 

4 

3 

a b 

FIG. 1. (a) Uniform interpolation. (b) Nonuniform interpolation. 
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i-l -. 1 

a b 

FIG. 2. (a) S:j” uniformly subdivided mesh. (b) Arbitrarily subdivided mesh. 

In the general case with bilinear elements (Fig. lb), four coefficients are needed for 
each line grid meshpoint not coinciding with a coarse grid meshpoint. The 
computation of these general coefficients (Eq. (21)) is not trivial since N$(x, y) is 
not explicitly known for an arbitrarily shaped element and one has first to invert the 
isoparametric transformation (Eq. (9)) to obtain $ and 7: from 

after which the computation is carried out in the r - v plane where the basis 
functions are simple polynomial expressions 

If, = N;:(x;, y”,) = N;f($, q”,). (24) 

With the bilinear elements for instance, N2h(<, r) is of the form 

N”([, ye) = $(I f t)(l l t’) (25) 

when the four corner points are situated at (<, v) = (k 1, + 1). 
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FINE TO COARSE GRID FUNCTION INTERPOLATION (RESTRICTION): OPERATORI~~ 

The value of 4” in the coarse mesh location calculated with the FE approximation 
in Sh leads to the identity since the coarse gridpoints belong also to the line grid. 

[zy#” Iii = p(x;h) ygy = 1 &N;,(xy) y,‘,“), (26) 

which due to Eq. (6) reduces to 

[z;h@h]ij = 4;. (27) 

This type of restriction is sometimes called injection. 

FINE TO COARSE GRID INTEGRAL INTERPOLATION: OPERATOR RZf,h 

As distinct from the FD case, the residual is an integral quantity which is scaled 
differently on different grids. It cannot be represented in the spaces Sh and SZh and 
the previous interpolation rules are inapplicable. In the Galerkin approach, the 
volume integrals are always of the form 

[R2h(#2h)], = I’ Nr g(qdZh) dS. 
“S 

(28) 

For instance, the residual in Eq. (7) can be rewritten in this form with 

s(42h) = v@(42h) v’“>. (29) 

A consistent representation of Rk!’ by means of fine grid quantities is found by 
approximating the coarse mesh functions in the integrand of Eq. (28) with line mesh 
interpolations in the space Sh, namely, 

[ RZ;hR h Iii = j; 2h ZihNv g(Zp#h) dS, 
I, 

(30) 

where SF is the coarse mesh residual integration domain, i.e., the part of S where 
NF # 0 (Fig. 2). 

The interpolation of gh(x, y) to the coarse mesh leads again to the identity since 
the interpolation of meshpoint values is the identity by virtue of Eq. (27): 

Zf,hq5h(~, y) = c N;,(x, y) Zyqh;, = 1 N;,(x, Y> #:, = $h(x, Y>. 
k,l k,l 

(31) 

In the same way, the coarse mesh basis function Ny(x, y) is approximated in the 
space Sh 

ZihNy(x, y) = x N:,(x, y) ZihNF(x;,, yf,). 
k.1 

(32) 
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By Eqs. (27) and (21), this leads to 

(33) 

The final expression for the coarse mesh residual weighting by means of line grid 
quantities is obtained from Eq. (30) by inserting expressions (31) and (33): 

IRZf/‘Rhlij = 1 Z;! 1. N&(x, y)g(qhh) dS. (34) 
h,l . .siy 

On a uniformly subdivided coarse mesh (Fig. 2a), it is clear that this general 
expression reduces to 

[Rz;hRh]ii = )’ zk!Rh 
h 

I., hl, (35) 

where the summation extends only over the 9 inner points in the domain SfF, since 
the coeffkients Zy are zero on and outside the boundaries of Sf/‘. 

Comparing Eqs. (20) and (35), one concludes that the coarse to fine mesh inter- 
polation Zth is the adjoint of the residual weighting RZih, since they have transposed 
coefficient matrices: 

[zth q52h ]i,j = y zy,qq, jRZ;hRhI..=\’ Zk!Rh 1.1 Y v hf. (36) 
h.l h.l 

The following result is obtained for uniform subdivisions (Fig. 2a), which 
corresponds to the uniform interpolation of Eq. (22): 

On an arbitrarily subdivided mesh (Fig. 2b), the situation is different due to 
nonoverlapping integration domains for the coarse and tine meshes. If one is willing 
to apply formula (35) with summation over the 9 innermost meshpoints in Fig. 2b 
and with the correct nonuniform coefficients, two sources of errors are introduced 
with respect to the exact formula, Eq. (34): 

First, the contributions of points (i * 1, j f 2) and (i f 2, j f 1) lying 
inside the coarse residual integration domain are omitted. For mildly 
distorted grids their contributions are negligible since the coeffkients Zt! 
are small near and are zero on or outside the limits of Sizj . Furthermore, 
the integral in Eq. (34) extends over only two tine mesh elements 
compared to four for the other points. 
Second, the tine mesh integration domain for points (i f 1, j f l), 
(i, j f I), and (i f 1, j) are not always completely contained in the coarse 



354 DECONINCK AND HIRSCH 

mesh domain Sifi”. Again the errors are small since the surface differences 
are small and moreover, the integrands in Eq. (34) approach zero near the 
limits of the line mesh integration domain. 

In conclusion, Eq. (35) remains an extremely valuable approximation for Eq. 34 in 
the arbitrary mesh case, but, of course, only when used with the arbitrary mesh inter- 
polation coefficient Zt already known from the nonuniform interpolation. 

Present FEM-MG Present FEM-MG 
Jameson MAD Jameson MAD 

Hoist Hoist 
Veuillot-Viviand Veuillot-Viviand 

0 

\I 

---------. 

. ..- . . . . . . . - . . . . . . 

,250 ,500 ,750 

PERCENT CHORD 

c 

4 

1 .oo 

,750 

,500 

,250 

0. 

- 250 

- ,500 

- ,750 

-1 .oo 

-1 .25 

.OO 

FIG. 3. Comparison with other conservative methods; NACA 0012, M = 0.80. 
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It remains equally valid on the Neumann boundaries of the physical domain, where 
the summation extends over six fine meshpoints and on the boundary corners, where 
four meshpoints are used. 

The same expression derived here was also obtained for orthogonal meshes by 
Nicolaides [7] and Brandt [6] based on the minimization approach. Brandt suggests 

I”’ /,“.,., 

I,,,,,,,, I,,,, -1.25 

,250 ,500 ,750 

PEPCENT CHOPD 

1 .oo 

FIG. 4. Evolution of the solution in pseudotime; the number of multigrid cycles is indicated, 
NACA 0012, M = 0.80. 
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that this natural choice is not always better than the residual injection which is given 
simply by 

[RI;hRh lij = 4R; (38) 

in the uniform case. 
This has not been confirmed by Nicolaides in his numerical experiments on a 

square uniform domain. On an arbitrary mesh, residual injection could be constructed 
with some theoretical support by supposing the function g(d”) constant over the 
coarse mesh residual integration domain allowing the following approximations: 

Rf? N 
r, - s(42h> I‘ Njjh dS, R;’ z g@“) 1. N; dS, (39) 

and hence 

[RI;hRh]ij=R; /j.NydS/j’N;dS); 

giving exactly expression (38) in the uniform case. 
Computational experience with Eq. (40) was highly unsatisfactory and showed that 

it is inapplicable, at least with the simple smoothing procedure used in this paper. 

COMPUTATIONAL RESULTS 

The convergence of the computation is measured by the evolution of the average 
residual on the finest grid in terms of the work count which is defined in units 
representing the work needed for one line relaxation sweep on the finest mesh. For 
instance, the work count of one complete multigrid cycle with four grids and for the 
present strategy is given by 

plus the additional work for the residual weighting and other interpolations. The 
convergence rate as used below is defined as the mean reduction in the average 
residual per unit of work. An initial approximate solution on the finest grid for the 
multigrid iteration is calculated by applying the grid refinement technique with five 
relaxation sweeps per grid. 

All computations are carried out on a tine mesh with 73 x 25 meshpoints and 
successively coarser meshes of 37 x 13, 19 x 7 and 10 x 4 meshpoints. Three sets of 
test cases are presented with different geometric boundary conditions. 

The first set is the nonlifting NACA 0012 single airfoil configuration for which the 
mesh generation method of [ 171 was adopted. The symmetric lower half part of the 
mesh was left out, however, since only symmetric nonlifting flows can be treated with 
the present code which is primarily intended for cascade flow computations. 
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FIG. 5. Convergence history (M = 0.80, NACA 0012); convergence rate is indicated. 
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FIG. 6. Convergence history (M = 0.85, NACA 0012); convergence rate is indicated. 
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With a free stream Mach number of 0.80, the standard workshop mesh [ 17 ] was 
used. In Fig. 3, the pressure distribution with a shock of moderate strength is 
compared with the results obtained by other participants. Good agreement is found. 
The evolution of the average residual is given in Fig. 5, where the influence of the 
number of grids is apparent. The convergence rate is improved from 0.967 for 2 grids 
to 0.900 for 4 grids. The high speed with which the flow pattern is established is 
illustrated in Fig. 4, where the pressure distribution obtained after 1, 2, 4, 7, 10, and 
13 multigrid cycles is shown. The solution is converged after 10 cycles except for a 
small overshoot ahead of the shock which is suppressed after 13 cycles, when the 
average residual is still only reduced by 2 x 10P2. 

The residual evolution for the grid relining method is also plotted on Fig. 5. 
beginning at 50 work units which is the amount of work carried out on the coarse 

Present FEM-MG :: z = 
Jameson MAD -- ______-_. 
HOlSt 
Chattoti‘olombeix.-._.-._ 
Veuillot-Viviand _-_-_ 
Grid refining 

O. 250 so0 ,750 1 .oo 

PERCENT CHORD 

FIG. 7. Comparison with other conservative methods; NACA 0012, M = 0.85. 
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grids before passing to the final mesh. A very fast initial reduction of the mean 
residual is seen, which corresponds to a fast suppression of the high-frequency errors 
by the consecutive relaxation sweeps. The remaining low-frequency errors are not 
eliminated and cause the convergence to slow down after a small number of relax- 
ation steps. 

Figure 7 shows the solution for the flow at Mach 0.85 containing a strong shock 
from M = 1.4 to M = 0.7. For this solution, the workshop mesh was used with a far 
field boundary at eight chordlengths from the airfoil. The convergence history is 
plotted in Fig. 6, showing a rate of 0.957 with four grids. The convergence rate with 
grid refining approaches 1 after 50 SLOR iterations and in fact, no further 
improvement of the solution could be obtained although it was not converged as is 

’ 1 CD 1 

1 ,750 

Converged 
After 21 MG-cycles ^.--.--$a-. is0 

,250 so0 .7so 

PERCENT CHORD 

FIG. 8. Comparison of solution after 21 multigrid cycles (50 work units) with converged solution; 
NACA 0012, M = 0.85. 

581/48/3-4 



360 DECONINCK AND HIRSCH 

seen by the dotted line in Fig. 7. The nonconverged solution has a sharp shock ahead 
of the correct converged shock position and is very similar to some of the nonconser- 
vative solutions presented in [ 171. As can be seen in Fig. 8, the correct shock position 
with the multigrid scheme is already obtained after 50 work units (21 multigrid 
cycles) with a mean residual reduction of only 5 x 10A2, showing again the extremely 
fast elimination of low-frequency errors. 

The second set of results is calculated for a channel flow with a circular bump on 
the lower wall with the standard workshop mesh [ 171 which is a sheared Cartesian 
system. It was given as a test case with an isentropic inlet Mach number of 0.85. This 
Mach number corresponds to a choked flow for the potential solution, as was 
confirmed by the results of Veuillot and Viviand while Jameson did not succeed in 
obtaining a solution for a Mach number higher that 0.835. On the other hand, all 

t I I i-l.25 

- ,500 -.250 0. ,250 .500 

PERCENT CH!JRD 

FIG. 9. Channel flow at M = 0.8435 
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other potential solutions, including our grid refinement solution, were far from 
choked, namely, with a peak Mach number of 50.92 on the upper wall. Again it is 
clear that this solution is not converged. Indeed, the multigrid solution converges at 
M = 0.849, with a choked solution as is shown in Fig. 10 for the pressure distribution 
and in Fig. 11 for the isomach lines. In this case, 250 work units were performed with 
an average residual reduction of 4.2 x lo-‘. The pressure distribution (Fig. 10) is 
compared with the solution obtained by Veuillot nad Viviand at M= 0.8500 with 
their pseudo-time-dependent fully conservative potential method [ 171. Our solution at 
M = 0.85 diverges because the imposed massflow rate at this Mach number is higher 
than the choking massflow obtained at M = 0.849. In Fig. 9, our solution at 
M= 0.835 is compared with the solution of Jameson obtained with his multigrid ADI 
scheme (MAD) on a 65 x 17 meshpoint grid allowing 4 or 5 different grids. The 

' Veuillot-Viviand ---------- 

500 - ,250 0. ,250 SC@ 
PEQCENT CHOW 

FIG. 10. Channel flow at M = 0.8490 (choked). 
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-m--e- 

I00 

I o-4 

0. 50 .o 100. 150. 200. 

UORK UNITS 

FIG. 12. Channel flow at M = 0.8435; convergence history (rate =0.9176). 
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FIG. 13. Subcritical cascade flow. Convergence history (convergence rate is indicated). 
M, = 0.7000, M, = 0.4750, 8, = 60.20, /I, = 50.83; DCA: -9.5” camber. 
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residual evolution with our method (Fig. 12) shows a convergence rate of 0.9176. The 
rate obtained by Jameson with MAD for this case was 0.9742 [ 171. For these results, 
we made use of an improved switching function given by 

pi = max(O, 1 - (Mf/Mf), 1 - (Mf/Mf_ ,)), 

where i - 1 is the upstream element of i. 
The final result is a subcritical compressor cascade flow. The mesh is generated by 

solving a system of elliptic partial differential equations for the curvilinear r - q 
coordinates [ 141. The convergence history is shown in Fig. 13 and compared with the 
grid refining. The rate obtained with four grids is 0.874 and illustrates that the 
periodic and Neumann boundary conditions have no adverse effect on the 
convergence speed obtained with our multigrid scheme, although no special treatment 
of the boundaries as suggested by Brandt has been introduced. 

CONCLUSION 

A conceptually simple multigrid scheme has been developed consistent with the 
finite element method and applicable to general arbitrarily generated body fitted 
grids. Therefore, nonuniform interpolation and residual weighting operators had to be 
introduced. A fast and reliable method is obtained with the simple straightforward 
line relaxation scheme as the smoothing step, allowing the calculation of realistic 
transonic flows with about 10 to 20 multigrid cycles (30 to 50 work units). 
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